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Chinese Olympiad 2003
IMO Team Selection Contest

Official Solutions

Translated by Li, Yi

Problem 1 ABC is an acute-angled triangle. AD is the bisector of ∠A. Let E, F
be the feet of perpendiculars from D to AC, AB respectively. Join BE
and CF and suppose they meet at H. The circumcircle of triangle
AFH meets BE at G. Prove that the triangle constructed from BG,
CE and BF is right-angled.

Proof. Suppose G′ is the feet of perpendicular from D to BE. By
Pythagoras’ Theorem, BG2 = G′E2 = BD2 − DE2 = BD2 − DF 2 =
BF 2. Hence BG′, G′E and BF can construct a right-angled triangle.
We only to prove that G′ is exactly G, and it is sufficient to prove that
A,F, G′, H lie on the same circle.

Join EF and we find that AD perpendicularly bisects AD. Suppose
AD meets EF at Q and let P be the feet of perpendicular from E to
BC. The extension of PQ meets AB at R and then we join RE.

Since Q,D, P, E are on the same circle, ∠QPD = ∠QED. A,F, D, E
are also on the same circle, ∠QED = ∠FAD. So A,R, D, P lie on the
same circle.

Notice that ∠RAQ = ∠DAC and ∠ARQ = ∠ADC, thus, triangle
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ARQ is similar to ADC and
AR

AQ
=

AD

AC
. Hence

AR

AF
=

AE

AC
. Therefore,

RE is parallel to FC and ∠AFC = ∠ARE.

Because A,R, D, P are on the same circle and so are G′, D, P, E, BG′ ·
BE = BD · BP = BR · BA, we get that A,R, G′, E lie on the same
circle. Hence, ∠AG′E = ∠ARE = ∠AFC. We finally know that
A,F, G′, H are on the same circle.

Problem 2 Suppose A ⊆ {0, 1, . . . , 29}. It satisfies that for any integer k and any
two members a, b ∈ A(a, b is allowed to be same), a + b + 30k is always
not the product of two consecutive integers. Please find A with largest
possible cardinality.

Solution. The answer is A = {3l + 2 | 0 ≤ l ≤ 9}.
Suppose A satisfy the conditions and |A| is largest. Suppose q is the
product of two consecutive integers, thus

q ≡ 0, 2, 6, 12, 20, 26 (mod 30).

For any a ∈ A, we have

2a 6≡ 0, 2, 6, 12, 20, 26 (mod 30).

which is,

2a 6≡ 0, 1, 3, 6, 10, 13, 15, 16, 18, 21, 25, 28 (mod 30).

Hence, A ⊆ {2, 4, 5, 7, 8, 9, 11, 12, 14, 17, 19, 20, 22, 23, 24, 26, 27, 29}. The
latter set is the union of the following ten disjoint sets: {2, 4}, {5, 7, },
{8, 12}, {9, 11}, {14, 22}, {17, 19}, {20}, {23, 27}, {26, 24}, {29} and
every set contains at most one element of A, so |A| ≤ 10.

If |A| = 10, then every set contains exactly at most one element in A,
thus 20 ∈ A and 29 ∈ A.

From 20 ∈ A we know that 12 6∈ A and 22 6∈ A, hence 8 ∈ A and
14 ∈ A. This implies that 4 6∈ A, 24 6∈ A, therefore, 2 ∈ A and 26 ∈ A.
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From 29 ∈ A we know that 7 6∈ A and 27 6∈ A, hence 5 ∈ A and 23 ∈ A.
This implies that 9 6∈ A, 19 6∈ A, therefore, 11 ∈ A and 17 ∈ A.

From all the above, we have A = {2, 5, 8, 11, 14, 17, 20, 23, 26, 29}, and
it does satisfy the conditions.

Problem 3 Suppose A ⊂ {(a1, a2, . . . , an) | ai ∈ R, i = 1, 2 . . . , n}. For any α =
(a1, a2, . . . , an) ∈ A and β = (b1, b2, . . . , bn) ∈ A, we define

γ(α, β) = (|a1 − b1|, |a2 − b2|, . . . , |an − bn|),

D(A) = {γ(α, β) | α, β ∈ A}.
Please show that |D(A)| ≥ |A|.

Proof. We use mathematical induction for n and the cardinality of A.

If A contains only one element, D(A) contains a zero vector. The
conclusion holds.

If n = 1, suppose A = {a1 < a2 < · · · < am}, thus

{0, a2 − a1, a3 − a1, . . . , am − a1} ⊆ D(A).

Hence |D(A)| ≥ |A|.
Assume |A| > 1 and n = 1. Define B = {(x1, x2, . . . , xn−1)| there exists
xn such that (x1, x2, . . . , xn−1, xn) ∈ A}. By the induction hypothesis
we have |D(B)| ≥ |B|.
For every b ∈ B, let Ab = {xn | (b, xn) ∈ A}, ab = max{x|x ∈ Ab},
C = A \ {(b, ab)|b ∈ B}. Thus, |C| = |A| − |B|.
Since |C| < |A|, by the induction hypothesis |D(C)| ≥ |C|.
On the other hand, D(A) =

⋃

D∈D(B)

{(D, |a − a′|) | d(b, b′) = D and

a ∈ Ab, a
′ ∈ Ab′}.

Similarly, let Cb = Ab \ {ab}, we have D(C) =
⋃

D∈D(B)

{(D, |c − c′|) |

d(b, b′) = D and c ∈ Cb, c
′ ∈ Cb′}.
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Notice that for every pair b, b′ ∈ B, the maximum difference |a−a′|(a ∈
Ab, a

′ ∈ Ab′) must be a = ab or a′ = ab′ . Therefore this maximum
difference does not appear in {|c− c′| | c ∈ Cb, c

′ ∈ Cb′}.
So for any D ∈ D(B), the set

{|c− c′| | d(b, b′) = D and c ∈ Cb, c
′ ∈ Cb′}

does not contain the maximum value in the set

{|a− a′| | d(b, b′) = D and a ∈ Ab, a
′ ∈ Ab′}.

The former set is a proper subset of the latter one.

Now we have

|D(C)| ≤
∑

D∈D(B)

(|{(D, |a− a′|) | d(b, b′) = D and a ∈ Ab, a
′ ∈ Ab′}| − 1)

≤ |D(A)| − |D(B)|.

Therefore |D(A)| ≥ |D(B)|+ |D(C)| ≥ |B|+ |C| = |A|.

Problem 4 Find all functions f : Z+ → R, which satisfies

(a) f(n + 1) ≥ f(n) for all n ≥ 1;

(b) f(mn) = f(m)f(n) for all (m,n) = 1.

Solution. Obviously f = 0 is a solution.

Now assume f 6= 0, thus f(1) 6= 0. If not, for any n ∈ Z+, it holds that
f(n) = f(1)f(n) = 0, we meet a contradiction here. So f(1) = 1.

From (a) we know that f(2) ≥ 1. Now we discuss in two cases.

Case i. f(2) = 1. We may prove that

f(n) = 1 (1)

for all n. In fact, we know from (b) that f(6) = f(2)f(3) = f(3).
Denote f(3) = a, a ≥ 1. Since f(3) = f(6) = a, we get from (a) that
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f(4) = f(5) = a. Use (b) again, we find that for any odd integer p, it
holds f(2p) = f(2)f(p) = f(p). From this and (a), we may prove that

f(n) = a (2)

for all n ≥ 3. In fact, a = f(3) = f(6) = f(5) = f(10) = f(9) =
f(18) = f(17) = f(34) = f(33) = · · ·
By (2) and (b), we know that a = 1, i.e., f = 1. Hence (1) is correct.

Case ii. f(2) > 1. Suppose f(2) = 2a, where a > 0.

Let g(x) = f 1/n(x), thus g(x) satisfies (a) and (b), and g(1) = 1, g(2) =
2.

Suppose k ≥ 2. We get from (a) that

2g(2k−1 − 1) = g(2)g(2k−1 − 1) = g(2k − 2)

≤ g(2k) ≤ g(2k + 2) = g(2)g(2k−1 + 1)

= 2g(2k−1 + 1);

If k ≥ 3,

22g(2k−2 − 1) = 2g(2k−1 − 2)

≤ g(2k) ≤ 2g(2k−1 + 2) = 22g(2k−2 + 1);

In this way, we may induction to prove that

2k−1 ≤ g(2k) ≤ 2k−1g(3) (3)

for all k ≥ 2. Similarly,

gk−1(m)g(m− 1) ≤ g(mk) ≤ gk−1(m)g(m + 1) (4)

for all k ≥ 2 and m ≥ 3. It is easy to check that (3) and (4) also hold
when k = 1.

Take m ≥ 3 and k ≥ 1, we have s ≥ 1 such that 2s ≤ mk < 2s+1, hence

s ≤ k log2 m < s + 1,

which is,
k log2 m− 1 < s ≤ log2 m, (5)
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By (a), we know that g(2s) ≤ g(mk) ≤ g(2s+1), then by (3) and (4),

{
2s−1 ≤ gk−1(m)g(m + 1)
gk−1(m)g(m− 1) ≤ 2s−1g(3).

i.e.,
2s−1

g(m + 1)
≤ gk−1(m) ≤ 2s−1g(3)

g(m− 1)
.

Therefore,
g(m)

g(m + 1)
2s−1 ≤ gk(m) ≤ g(m)g(3)

g(m− 1)
2s−1.

We get from (5) that

g(m)

4g(m + 1)
2k log2 m ≤ gk(m) ≤ g(m)g(3)

2g(m− 1)
2k log2 m.

so

k

√
g(m)

4g(m + 1)
2log2 m ≤ g(m) ≤ k

√
g(m)g(3)

2g(m− 1)
2log2 m.

Let k →∞, we get g(n) = m which implies that f(m) = mk.

From all the above, we finally know that f = 0 or f(n) = na(a ≥ 0).

Problem 5 Suppose A = {1, 2, . . . , 2002} and M = {1001, 2003, 3005}. B is an
non-empty subset of A. B is called a M -free set if the sum of any two
numbers in B does not belong to M . If A = A1 ∪A2, A1 ∩A2 = ∅ and
A1, A2 are M -free sets, we call the ordered pair (A1, A2) a M -partition
of A. Find the number of M -partitions of A.

Solution. We call m and n (m,n ∈ A) are relative if m + n = 1001 or
2003 or 3005.

It is clear that the numbers relative to 1 are only 1000 and 2002, and
the numbers relative to 2002 are 1 and 1003, and relative to 1003 are
1000 and 2002.
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Hence, 1, 1003, 1000, 2002 must be divided into two groups: {1, 1003}
and {1000, 2002}. Similarly, we can get other divisions

{2, 1004} , {999, 2001};
{3, 1005} , {998, 2000};

. . .

{500, 1502} , {501, 1503};
{1001} , {1002}.

Now the 2002 numbers in A have been divided into 501 pairs, 1002
groups in all.

Because every number is only relative to the its correspond group in
the same pair, we know that if a group is in A1, then its correspond
group must be in A2. Therefore the number of M -partitions of A is
2501.

Problem 6 xn is a real sequence satisfying x0 = 0, x2 = 3
√

2x1, x3 is a positive

integers and xn+1 =
1
3
√

4
xn +

3
√

4xn−1 +
1

2
xn−2 for n ≥ 2. How many

integers at least belong to this sequence?

Solution. Assume n ≥ 2,

xn+1 − 3
√

2xn − 1
3
√

2
xn−1

=
1
3
√

4
xn − 3

√
2xn +

3
√

4xn−1 − 1
3
√

2
xn−1 +

1

2
xn−2

= −
3
√

2

2
xn +

3
√

4

2
xn−1 +

1

2
xn−2

= −
3
√

2

2

(
xn − 3

√
2xn−1 − 1

3
√

2
xn−2

)
.

Since x2 − 3
√

2x1 − 1
3
√

2
x0 = 0,

xn+1 =
3
√

2xn +
1
3
√

2
xn−1 (∀ n ≥ 1) (1)
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The characteristic equation of (1) is λ2 =
3
√

2λ +
1
3
√

2
, from which we

get λ =
3
√

2

2
(1±

√
3). And by x0 = 0, we have

xn = A

(
3
√

2

2

)n

((1 +
√

3)n − (1−
√

3)n).

So x3 =
A

4

(
3
√

2

2

)3

((1 +
√

3)n − (1 −
√

3)3) = 3
√

3A, from which we

get A =
x3

3
√

3
. Therefore,

xn =
x3

3
√

3

(
3
√

2

2

)n

((1 +
√

3)n − (1−
√

3)n). (2)

Denote an =
1√
3
((1 +

√
3)n − (1 −

√
3)n), it is obvious that an is an

even number sequence. From x3 is a positive integer and (2) we know
the necessary condition for an being an integer is 3|n.

a3k =
3

3
√

3
((1 +

√
3)3k − (1−

√
3)3k)

=
3

3
√

3
((10 + 6

√
3)k − (10− 6

√
3)k)

We know that 3|a3k.

Let bn = (1 +
√

3)n + (1 − √
3)n, n ≥ 0, bn is also an even number

sequence. It is easy to see that for any non-negative integers m,n, it
holds 




an+m =
1

2
(anbm + ambn),

bn+m =
1

2
(bnbm + 3anam).

(3)

Let m = n in (3), {
a2n = anbn,

b2n =
1

2
(b2

n + 3a2
n).

(4)
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Suppose an = 2knpn, bn = 2lnqn, where n, kn, ln are positive integers
and pn, qn are odd integers.

Since a1 = b1 = 2, i.e., k1 = l1 = 1, we know from (4) that
k2 = 2 , l2 = 3,
k4 = 5 , l4 = 3,
k8 = 8 , l8 = 5.

We get by induction that

k2m =





1, m = 0,
2, m = 1,
2m−1 + m + 1, m ≥ 2,

and

l2m =





1, m = 0,
3, m = 1,
2m−1 + 1, m ≥ 2,

∀ m1 > m2 ≥ 2, we have by (3) that




a2m1+2m2 =
1

2
(a2m1 b2m2 + a2m2 b2m1 )

b2m1+2m2 =
1

2
(b2m1 b2m2 + 3a2m1a2m1 )

And it implies that
{

k2m1+2m2 = 2m1−1 + 2m2−1 + m2 + 1
l2m1+2m2 = 2m1−1 + 2m2−1 + 1

Using induction, we may prove that for m1 > m2 > · · · > mr ≥ 2,
{

k2m1+2m2+···+2mr = 2m1−1 + 2m2−1 + · · ·+ 2mr−1 + mr + 1
l2m1+2m2+···+2mr = 2m1−1 + 2m2−1 + · · ·+ 2mr−1 + 1

That is, when n = 2rp, where r(r ≥ 2) is an integer and p is odd, it
holds that 




kn =
n

2
+ r + 1,

ln =
n

2
+ 1.

(5)

When n = 4m + 1, we have from (3) that

a4m+1 =
1

2
(a4mb1 + a1b4m) = a4m + b4m
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and from (5) that k4m+1 = 2m + 1.

Similarly, from

a4m+2 =
1

2
(a4mb2 + a2b4m) = 2(2a4m + b4m)

and

a4m+3 =
1

2
(a4mb3 + a3b4m) = 2(5a4m + 3b4m),

it holds that k4m+2 = k4m+3 = 2m + 2.

From all the above, we get

kn =





n

2
+

1

2
, n is odd,

n

2
+ 1, n ≡ 2 (mod 4),

n

2
+ r + 1, n = 2rp, r ≥ 2, p is odd.

When 3|n, we get from (2) that

xn =
x3

3
2−

2
3
nan =

x3

3
2kn− 2

3
npn,

where 3|pn. Since k3 = 2 =
2

3
× 3, k6 = 4 =

2

3
× 6, k12 = 9 >

2

3
× 12

and k24 = 16 =
2

3
× 24, x3, x6, x12 and x24 are all integers.

If n 6≡ 0 (mod 4), then kn ≤ n

2
+ 1. So

kn − 2

3
n ≤ 1− n

6
< 0(∀ n > 6). (6)

If n ≡ 0 (mod 4), since 3|n, n = 2r3kq, where r ≥ 2, k ≥ 1 and q does
not have a factor 3. We know from (5) that kn = 2r−13kq+r+1. Hence

kn − 2

3
n = 2r−13kq + r + 1− 2r+13k−1q

= r + 1− 2r−13k−1q ≤ r + 1− 2r+1.

The equality above holds if and only if k = q = 1.
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When r > 3, 2r−1 > r + 1. We know from this that when r > 3 or
2 ≤ r ≤ 3 and k 6= 1 or q 6= 1, it holds that

kn − 2

3
n < 0 (7)

From (6) and (7), we get that only x0, x3, x6, x12, x24 are integers in
the sequence {xn}. We finally obtain that at least five numbers in the
sequence are integers.


