# Chinese Olympiad 2003 <br> IMO Team Selection Contest <br> Official Solutions <br> Translated by Li, Yi 

Problem $1 A B C$ is an acute-angled triangle. $A D$ is the bisector of $\angle A$. Let $E, F$ be the feet of perpendiculars from $D$ to $A C, A B$ respectively. Join $B E$ and $C F$ and suppose they meet at $H$. The circumcircle of triangle $A F H$ meets $B E$ at $G$. Prove that the triangle constructed from $B G$, $C E$ and $B F$ is right-angled.

Proof. Suppose $G^{\prime}$ is the feet of perpendicular from $D$ to $B E$. By Pythagoras' Theorem, $B G^{2}=G^{\prime} E^{2}=B D^{2}-D E^{2}=B D^{2}-D F^{2}=$ $B F^{2}$. Hence $B G^{\prime}, G^{\prime} E$ and $B F$ can construct a right-angled triangle. We only to prove that $G^{\prime}$ is exactly $G$, and it is sufficient to prove that $A, F, G^{\prime}, H$ lie on the same circle.


Join $E F$ and we find that $A D$ perpendicularly bisects $A D$. Suppose $A D$ meets $E F$ at $Q$ and let $P$ be the feet of perpendicular from $E$ to $B C$. The extension of $P Q$ meets $A B$ at $R$ and then we join $R E$.
Since $Q, D, P, E$ are on the same circle, $\angle Q P D=\angle Q E D . A, F, D, E$ are also on the same circle, $\angle Q E D=\angle F A D$. So $A, R, D, P$ lie on the same circle.

Notice that $\angle R A Q=\angle D A C$ and $\angle A R Q=\angle A D C$, thus, triangle
$A R Q$ is similar to $A D C$ and $\frac{A R}{A Q}=\frac{A D}{A C}$. Hence $\frac{A R}{A F}=\frac{A E}{A C}$. Therefore, $R E$ is parallel to $F C$ and $\angle A F C=\angle A R E$.
Because $A, R, D, P$ are on the same circle and so are $G^{\prime}, D, P, E, B G^{\prime}$. $B E=B D \cdot B P=B R \cdot B A$, we get that $A, R, G^{\prime}, E$ lie on the same circle. Hence, $\angle A G^{\prime} E=\angle A R E=\angle A F C$. We finally know that $A, F, G^{\prime}, H$ are on the same circle.

Problem 2 Suppose $A \subseteq\{0,1, \ldots, 29\}$. It satisfies that for any integer $k$ and any two members $a, b \in A(a, b$ is allowed to be same $), a+b+30 k$ is always not the product of two consecutive integers. Please find $A$ with largest possible cardinality.

Solution. The answer is $A=\{3 l+2 \mid 0 \leq l \leq 9\}$.
Suppose $A$ satisfy the conditions and $|A|$ is largest. Suppose $q$ is the product of two consecutive integers, thus

$$
q \equiv 0,2,6,12,20,26 \quad(\bmod 30) .
$$

For any $a \in A$, we have

$$
2 a \not \equiv 0,2,6,12,20,26 \quad(\bmod 30)
$$

which is,

$$
2 a \not \equiv 0,1,3,6,10,13,15,16,18,21,25,28 \quad(\bmod 30) .
$$

Hence, $A \subseteq\{2,4,5,7,8,9,11,12,14,17,19,20,22,23,24,26,27,29\}$. The latter set is the union of the following ten disjoint sets: $\{2,4\},\{5,7$,$\} ,$ $\{8,12\},\{9,11\},\{14,22\},\{17,19\},\{20\},\{23,27\},\{26,24\},\{29\}$ and every set contains at most one element of $A$, so $|A| \leq 10$.

If $|A|=10$, then every set contains exactly at most one element in $A$, thus $20 \in A$ and $29 \in A$.

From $20 \in A$ we know that $12 \notin A$ and $22 \notin A$, hence $8 \in A$ and $14 \in A$. This implies that $4 \notin A, 24 \notin A$, therefore, $2 \in A$ and $26 \in A$.

From $29 \in A$ we know that $7 \notin A$ and $27 \notin A$, hence $5 \in A$ and $23 \in A$. This implies that $9 \notin A, 19 \notin A$, therefore, $11 \in A$ and $17 \in A$.
From all the above, we have $A=\{2,5,8,11,14,17,20,23,26,29\}$, and it does satisfy the conditions.

Problem 3 Suppose $A \subset\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{R}, i=1,2 \ldots, n\right\}$. For any $\alpha=$ $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A$ and $\beta=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in A$, we define

$$
\begin{gathered}
\gamma(\alpha, \beta)=\left(\left|a_{1}-b_{1}\right|,\left|a_{2}-b_{2}\right|, \ldots,\left|a_{n}-b_{n}\right|\right), \\
D(A)=\{\gamma(\alpha, \beta) \mid \alpha, \beta \in A\} .
\end{gathered}
$$

Please show that $|D(A)| \geq|A|$.
Proof. We use mathematical induction for $n$ and the cardinality of $A$. If $A$ contains only one element, $D(A)$ contains a zero vector. The conclusion holds.

If $n=1$, suppose $A=\left\{a_{1}<a_{2}<\cdots<a_{m}\right\}$, thus

$$
\left\{0, a_{2}-a_{1}, a_{3}-a_{1}, \ldots, a_{m}-a_{1}\right\} \subseteq D(A)
$$

Hence $|D(A)| \geq|A|$.
Assume $|A|>1$ and $n=1$. Define $B=\left\{\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \mid\right.$ there exists $x_{n}$ such that $\left.\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right) \in A\right\}$. By the induction hypothesis we have $|D(B)| \geq|B|$.
For every $b \in B$, let $A_{b}=\left\{x_{n} \mid\left(b, x_{n}\right) \in A\right\}, a_{b}=\max \left\{x \mid x \in A_{b}\right\}$, $C=A \backslash\left\{\left(b, a_{b}\right) \mid b \in B\right\}$. Thus, $|C|=|A|-|B|$.
Since $|C|<|A|$, by the induction hypothesis $|D(C)| \geq|C|$.
On the other hand, $D(A)=\bigcup_{D \in D(B)}\left\{\left(D,\left|a-a^{\prime}\right|\right) \mid d\left(b, b^{\prime}\right)=D\right.$ and $\left.a \in A_{b}, a^{\prime} \in A_{b^{\prime}}\right\}$.
Similarly, let $C_{b}=A_{b} \backslash\left\{a_{b}\right\}$, we have $D(C)=\bigcup_{D \in D(B)}\left\{\left(D,\left|c-c^{\prime}\right|\right) \mid\right.$ $d\left(b, b^{\prime}\right)=D$ and $\left.c \in C_{b}, c^{\prime} \in C_{b^{\prime}}\right\}$.

Notice that for every pair $b, b^{\prime} \in B$, the maximum difference $\left|a-a^{\prime}\right|(a \in$ $A_{b}, a^{\prime} \in A_{b^{\prime}}$ ) must be $a=a_{b}$ or $a^{\prime}=a_{b^{\prime}}$. Therefore this maximum difference does not appear in $\left\{\left|c-c^{\prime}\right| \mid c \in C_{b}, c^{\prime} \in C_{b^{\prime}}\right\}$.
So for any $D \in D(B)$, the set

$$
\left\{\left|c-c^{\prime}\right| \mid d\left(b, b^{\prime}\right)=D \text { and } c \in C_{b}, c^{\prime} \in C_{b^{\prime}}\right\}
$$

does not contain the maximum value in the set

$$
\left\{\left|a-a^{\prime}\right| \mid d\left(b, b^{\prime}\right)=D \text { and } a \in A_{b}, a^{\prime} \in A_{b^{\prime}}\right\} .
$$

The former set is a proper subset of the latter one.
Now we have

$$
\begin{aligned}
|D(C)| & \leq \sum_{D \in D(B)}\left(\mid\left\{\left(D,\left|a-a^{\prime}\right|\right) \mid d\left(b, b^{\prime}\right)=D \text { and } a \in A_{b}, a^{\prime} \in A_{b^{\prime}}\right\} \mid-1\right) \\
& \leq|D(A)|-|D(B)| .
\end{aligned}
$$

Therefore $|D(A)| \geq|D(B)|+|D(C)| \geq|B|+|C|=|A|$.

Problem 4 Find all functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}$, which satisfies
(a) $f(n+1) \geq f(n)$ for all $n \geq 1$;
(b) $f(m n)=f(m) f(n)$ for all $(m, n)=1$.

Solution. Obviously $f=0$ is a solution.
Now assume $f \neq 0$, thus $f(1) \neq 0$. If not, for any $n \in \mathbb{Z}^{+}$, it holds that $f(n)=f(1) f(n)=0$, we meet a contradiction here. So $f(1)=1$.
From (a) we know that $f(2) \geq 1$. Now we discuss in two cases.
Case i. $f(2)=1$. We may prove that

$$
\begin{equation*}
f(n)=1 \tag{1}
\end{equation*}
$$

for all $n$. In fact, we know from (b) that $f(6)=f(2) f(3)=f(3)$. Denote $f(3)=a, a \geq 1$. Since $f(3)=f(6)=a$, we get from (a) that
$f(4)=f(5)=a$. Use (b) again, we find that for any odd integer $p$, it holds $f(2 p)=f(2) f(p)=f(p)$. From this and (a), we may prove that

$$
\begin{equation*}
f(n)=a \tag{2}
\end{equation*}
$$

for all $n \geq 3$. In fact, $a=f(3)=f(6)=f(5)=f(10)=f(9)=$ $f(18)=f(17)=f(34)=f(33)=\cdots$
By (2) and (b), we know that $a=1$, i.e., $f=1$. Hence (1) is correct.
Case ii. $f(2)>1$. Suppose $f(2)=2^{a}$, where $a>0$.
Let $g(x)=f^{1 / n}(x)$, thus $g(x)$ satisfies (a) and (b), and $g(1)=1, g(2)=$ 2.

Suppose $k \geq 2$. We get from (a) that

$$
\begin{aligned}
2 g\left(2^{k-1}-1\right) & =g(2) g\left(2^{k-1}-1\right)=g\left(2^{k}-2\right) \\
& \leq g\left(2^{k}\right) \leq g\left(2^{k}+2\right)=g(2) g\left(2^{k-1}+1\right) \\
& =2 g\left(2^{k-1}+1\right)
\end{aligned}
$$

If $k \geq 3$,

$$
\begin{aligned}
2^{2} g\left(2^{k-2}-1\right) & =2 g\left(2^{k-1}-2\right) \\
& \leq g\left(2^{k}\right) \leq 2 g\left(2^{k-1}+2\right)=2^{2} g\left(2^{k-2}+1\right)
\end{aligned}
$$

In this way, we may induction to prove that

$$
\begin{equation*}
2^{k-1} \leq g\left(2^{k}\right) \leq 2^{k-1} g(3) \tag{3}
\end{equation*}
$$

for all $k \geq 2$. Similarly,

$$
\begin{equation*}
g^{k-1}(m) g(m-1) \leq g\left(m^{k}\right) \leq g^{k-1}(m) g(m+1) \tag{4}
\end{equation*}
$$

for all $k \geq 2$ and $m \geq 3$. It is easy to check that (3) and (4) also hold when $k=1$.
Take $m \geq 3$ and $k \geq 1$, we have $s \geq 1$ such that $2^{s} \leq m^{k}<2^{s+1}$, hence

$$
s \leq k \log _{2} m<s+1,
$$

which is,

$$
\begin{equation*}
k \log _{2} m-1<s \leq \log _{2} m, \tag{5}
\end{equation*}
$$

By (a), we know that $g\left(2^{s}\right) \leq g\left(m^{k}\right) \leq g\left(2^{s+1}\right)$, then by (3) and (4),

$$
\left\{\begin{array}{l}
2^{s-1} \leq g^{k-1}(m) g(m+1) \\
g^{k-1}(m) g(m-1) \leq 2^{s-1} g(3)
\end{array}\right.
$$

i.e.,

$$
\frac{2^{s-1}}{g(m+1)} \leq g^{k-1}(m) \leq \frac{2^{s-1} g(3)}{g(m-1)}
$$

Therefore,

$$
\frac{g(m)}{g(m+1)} 2^{s-1} \leq g^{k}(m) \leq \frac{g(m) g(3)}{g(m-1)} 2^{s-1}
$$

We get from (5) that

$$
\frac{g(m)}{4 g(m+1)} 2^{k \log _{2} m} \leq g^{k}(m) \leq \frac{g(m) g(3)}{2 g(m-1)} 2^{k \log _{2} m}
$$

so

$$
\sqrt[k]{\frac{g(m)}{4 g(m+1)}} 2^{\log _{2} m} \leq g(m) \leq \sqrt[k]{\frac{g(m) g(3)}{2 g(m-1)}} 2^{\log _{2} m}
$$

Let $k \rightarrow \infty$, we get $g(n)=m$ which implies that $f(m)=m^{k}$.
From all the above, we finally know that $f=0$ or $f(n)=n^{a}(a \geq 0)$.

Problem 5 Suppose $A=\{1,2, \ldots, 2002\}$ and $M=\{1001,2003,3005\} . B$ is an non-empty subset of $A . B$ is called a $M$-free set if the sum of any two numbers in $B$ does not belong to $M$. If $A=A_{1} \cup A_{2}, A_{1} \cap A_{2}=\emptyset$ and $A_{1}, A_{2}$ are $M$-free sets, we call the ordered pair $\left(A_{1}, A_{2}\right)$ a $M$-partition of $A$. Find the number of $M$-partitions of $A$.

Solution. We call $m$ and $n(m, n \in A)$ are relative if $m+n=1001$ or 2003 or 3005.
It is clear that the numbers relative to 1 are only 1000 and 2002 , and the numbers relative to 2002 are 1 and 1003, and relative to 1003 are 1000 and 2002.

Hence, 1, 1003, 1000, 2002 must be divided into two groups: $\{1,1003\}$ and $\{1000,2002\}$. Similarly, we can get other divisions

$$
\begin{array}{rlll}
\{2,1004\} & , & \{999,2001\} ; \\
\{3,1005\} & , & \{998,2000\} ; \\
& \ldots & \\
\{500,1502\} & , & \{501,1503\} ; \\
\{1001\} & , & \{1002\} .
\end{array}
$$

Now the 2002 numbers in $A$ have been divided into 501 pairs, 1002 groups in all.
Because every number is only relative to the its correspond group in the same pair, we know that if a group is in $A_{1}$, then its correspond group must be in $A_{2}$. Therefore the number of $M$-partitions of $A$ is $2^{501}$.

Problem $6 x_{n}$ is a real sequence satisfying $x_{0}=0, x_{2}=\sqrt[3]{2} x_{1}, x_{3}$ is a positive integers and $x_{n+1}=\frac{1}{\sqrt[3]{4}} x_{n}+\sqrt[3]{4} x_{n-1}+\frac{1}{2} x_{n-2}$ for $n \geq 2$. How many integers at least belong to this sequence?

Solution. Assume $n \geq 2$,

$$
\begin{aligned}
& x_{n+1}-\sqrt[3]{2} x_{n}-\frac{1}{\sqrt[3]{2}} x_{n-1} \\
= & \frac{1}{\sqrt[3]{4}} x_{n}-\sqrt[3]{2} x_{n}+\sqrt[3]{4} x_{n-1}-\frac{1}{\sqrt[3]{2}} x_{n-1}+\frac{1}{2} x_{n-2} \\
= & -\frac{\sqrt[3]{2}}{2} x_{n}+\frac{\sqrt[3]{4}}{2} x_{n-1}+\frac{1}{2} x_{n-2} \\
= & -\frac{\sqrt[3]{2}}{2}\left(x_{n}-\sqrt[3]{2} x_{n-1}-\frac{1}{\sqrt[3]{2}} x_{n-2}\right) .
\end{aligned}
$$

Since $x_{2}-\sqrt[3]{2} x_{1}-\frac{1}{\sqrt[3]{2}} x_{0}=0$,

$$
\begin{equation*}
x_{n+1}=\sqrt[3]{2} x_{n}+\frac{1}{\sqrt[3]{2}} x_{n-1} \quad(\forall n \geq 1) \tag{1}
\end{equation*}
$$

The characteristic equation of (1) is $\lambda^{2}=\sqrt[3]{2} \lambda+\frac{1}{\sqrt[3]{2}}$, from which we get $\lambda=\frac{\sqrt[3]{2}}{2}(1 \pm \sqrt{3})$. And by $x_{0}=0$, we have

$$
x_{n}=A\left(\frac{\sqrt[3]{2}}{2}\right)^{n}\left((1+\sqrt{3})^{n}-(1-\sqrt{3})^{n}\right)
$$

So $x_{3}=\frac{A}{4}\left(\frac{\sqrt[3]{2}}{2}\right)^{3}\left((1+\sqrt{3})^{n}-(1-\sqrt{3})^{3}\right)=3 \sqrt{3} A$, from which we get $A=\frac{x_{3}}{3 \sqrt{3}}$. Therefore,

$$
\begin{equation*}
x_{n}=\frac{x_{3}}{3 \sqrt{3}}\left(\frac{\sqrt[3]{2}}{2}\right)^{n}\left((1+\sqrt{3})^{n}-(1-\sqrt{3})^{n}\right) . \tag{2}
\end{equation*}
$$

Denote $a_{n}=\frac{1}{\sqrt{3}}\left((1+\sqrt{3})^{n}-(1-\sqrt{3})^{n}\right)$, it is obvious that $a_{n}$ is an even number sequence. From $x_{3}$ is a positive integer and (2) we know the necessary condition for $a_{n}$ being an integer is $3 \mid n$.

$$
\begin{aligned}
a_{3 k} & =\frac{3}{3 \sqrt{3}}\left((1+\sqrt{3})^{3 k}-(1-\sqrt{3})^{3 k}\right) \\
& =\frac{3}{3 \sqrt{3}}\left((10+6 \sqrt{3})^{k}-(10-6 \sqrt{3})^{k}\right)
\end{aligned}
$$

We know that $3 \mid a_{3 k}$.
Let $b_{n}=(1+\sqrt{3})^{n}+(1-\sqrt{3})^{n}, n \geq 0, b_{n}$ is also an even number sequence. It is easy to see that for any non-negative integers $m, n$, it holds

$$
\left\{\begin{align*}
a_{n+m} & =\frac{1}{2}\left(a_{n} b_{m}+a_{m} b_{n}\right)  \tag{3}\\
b_{n+m} & =\frac{1}{2}\left(b_{n} b_{m}+3 a_{n} a_{m}\right)
\end{align*}\right.
$$

Let $m=n$ in (3),

$$
\left\{\begin{align*}
a_{2 n} & =a_{n} b_{n}  \tag{4}\\
b_{2 n} & =\frac{1}{2}\left(b_{n}^{2}+3 a_{n}^{2}\right)
\end{align*}\right.
$$

Suppose $a_{n}=2^{k_{n}} p_{n}, b_{n}=2^{l_{n}} q_{n}$, where $n, k_{n}, l_{n}$ are positive integers and $p_{n}, q_{n}$ are odd integers.
Since $a_{1}=b_{1}=2$, i.e., $k_{1}=l_{1}=1$, we know from (4) that
$k_{2}=2 \quad, \quad l_{2}=3$,
$k_{4}=5, l_{4}=3$, We get by induction that
$k_{8}=8 \quad, \quad l_{8}=5$.

$$
k_{2^{m}}= \begin{cases}1, & m=0 \\ 2, & m=1, \\ 2^{m-1}+m+1, & m \geq 2\end{cases}
$$

and

$$
l_{2^{m}}= \begin{cases}1, & m=0 \\ 3, & m=1 \\ 2^{m-1}+1, & m \geq 2\end{cases}
$$

$\forall m_{1}>m_{2} \geq 2$, we have by (3) that

$$
\left\{\begin{array}{l}
a_{2^{m_{1}}+2^{m_{2}}}=\frac{1}{2}\left(a_{2^{m_{1}}} b_{2^{m_{2}}}+a_{2^{m_{2}}} b_{2^{m_{1}}}\right) \\
b_{2^{m_{1}}+2^{m_{2}}}=\frac{1}{2}\left(b_{2^{m_{1}}} b_{2^{m_{2}}}+3 a_{2^{m_{1}}} a_{2^{m_{1}}}\right)
\end{array}\right.
$$

And it implies that

$$
\left\{\begin{aligned}
k_{2^{m_{1}}+2^{m_{2}}} & =2^{m_{1}-1}+2^{m_{2}-1}+m_{2}+1 \\
l_{2^{m_{1}}+2^{m_{2}}} & =2^{m_{1}-1}+2^{m_{2}-1}+1
\end{aligned}\right.
$$

Using induction, we may prove that for $m_{1}>m_{2}>\cdots>m_{r} \geq 2$,

$$
\left\{\begin{aligned}
k_{2^{m_{1}}+2^{m_{2}}+\cdots+2^{m r}} & =2^{m_{1}-1}+2^{m_{2}-1}+\cdots+2^{m_{r}-1}+m_{r}+1 \\
l_{2^{m_{1}}+2^{m_{2}}+\cdots+2^{m r}} & =2^{m_{1}-1}+2^{m_{2}-1}+\cdots+2^{m_{r}-1}+1
\end{aligned}\right.
$$

That is, when $n=2^{r} p$, where $r(r \geq 2)$ is an integer and $p$ is odd, it holds that

$$
\left\{\begin{align*}
k_{n} & =\frac{n}{2}+r+1  \tag{5}\\
l_{n} & =\frac{n}{2}+1
\end{align*}\right.
$$

When $n=4 m+1$, we have from (3) that

$$
a_{4 m+1}=\frac{1}{2}\left(a_{4 m} b_{1}+a_{1} b_{4 m}\right)=a_{4 m}+b_{4 m}
$$

and from (5) that $k_{4 m+1}=2 m+1$.
Similarly, from

$$
a_{4 m+2}=\frac{1}{2}\left(a_{4 m} b_{2}+a_{2} b_{4 m}\right)=2\left(2 a_{4 m}+b_{4 m}\right)
$$

and

$$
a_{4 m+3}=\frac{1}{2}\left(a_{4 m} b_{3}+a_{3} b_{4 m}\right)=2\left(5 a_{4 m}+3 b_{4 m}\right),
$$

it holds that $k_{4 m+2}=k_{4 m+3}=2 m+2$.
From all the above, we get

$$
k_{n}= \begin{cases}\frac{n}{2}+\frac{1}{2}, & n \text { is odd } \\ \frac{n}{2}+1, & n \equiv 2 \quad(\bmod 4), \\ \frac{n}{2}+r+1, & n=2^{r} p, r \geq 2, p \text { is odd. }\end{cases}
$$

When $3 \mid n$, we get from (2) that

$$
x_{n}=\frac{x_{3}}{3} 2^{-\frac{2}{3} n} a_{n}=\frac{x_{3}}{3} 2^{k_{n}-\frac{2}{3} n} p_{n},
$$

where $3 \mid p_{n}$. Since $k_{3}=2=\frac{2}{3} \times 3, k_{6}=4=\frac{2}{3} \times 6, k_{12}=9>\frac{2}{3} \times 12$ and $k_{24}=16=\frac{2}{3} \times 24, x_{3}, x_{6}, x_{12}$ and $x_{24}$ are all integers.
If $n \not \equiv 0(\bmod 4)$, then $k_{n} \leq \frac{n}{2}+1$. So

$$
\begin{equation*}
k_{n}-\frac{2}{3} n \leq 1-\frac{n}{6}<0(\forall n>6) . \tag{6}
\end{equation*}
$$

If $n \equiv 0(\bmod 4)$, since $3 \mid n, n=2^{r} 3^{k} q$, where $r \geq 2, k \geq 1$ and $q$ does not have a factor 3 . We know from (5) that $k_{n}=2^{r-1} 3^{k} q+r+1$. Hence

$$
\begin{aligned}
k_{n}-\frac{2}{3} n & =2^{r-1} 3^{k} q+r+1-2^{r+1} 3^{k-1} q \\
& =r+1-2^{r-1} 3^{k-1} q \leq r+1-2^{r+1} .
\end{aligned}
$$

The equality above holds if and only if $k=q=1$.

When $r>3,2^{r-1}>r+1$. We know from this that when $r>3$ or $2 \leq r \leq 3$ and $k \neq 1$ or $q \neq 1$, it holds that

$$
\begin{equation*}
k_{n}-\frac{2}{3} n<0 \tag{7}
\end{equation*}
$$

From (6) and (7), we get that only $x_{0}, x_{3}, x_{6}, x_{12}, x_{24}$ are integers in the sequence $\left\{x_{n}\right\}$. We finally obtain that at least five numbers in the sequence are integers.

